Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.

Identifieur interne : 000063 ( Main/Exploration ); précédent : 000062; suivant : 000064

Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.

Auteurs : Roshan Sharma Poudel [États-Unis] ; Jonathan Richards [États-Unis] ; Subidhya Shrestha [États-Unis] ; Shyam Solanki [États-Unis] ; Robert Brueggeman [États-Unis]

Source :

RBID : pubmed:31842749

Descripteurs français

English descriptors

Abstract

BACKGROUND

Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley.

RESULTS

Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses.

CONCLUSIONS

This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.


DOI: 10.1186/s12864-019-6369-7
PubMed: 31842749
PubMed Central: PMC6915985


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.</title>
<author>
<name sortKey="Sharma Poudel, Roshan" sort="Sharma Poudel, Roshan" uniqKey="Sharma Poudel R" first="Roshan" last="Sharma Poudel">Roshan Sharma Poudel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Jonathan" sort="Richards, Jonathan" uniqKey="Richards J" first="Jonathan" last="Richards">Jonathan Richards</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shrestha, Subidhya" sort="Shrestha, Subidhya" uniqKey="Shrestha S" first="Subidhya" last="Shrestha">Subidhya Shrestha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Solanki, Shyam" sort="Solanki, Shyam" uniqKey="Solanki S" first="Shyam" last="Solanki">Shyam Solanki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brueggeman, Robert" sort="Brueggeman, Robert" uniqKey="Brueggeman R" first="Robert" last="Brueggeman">Robert Brueggeman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA. bob.brueggeman@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31842749</idno>
<idno type="pmid">31842749</idno>
<idno type="doi">10.1186/s12864-019-6369-7</idno>
<idno type="pmc">PMC6915985</idno>
<idno type="wicri:Area/Main/Corpus">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000053</idno>
<idno type="wicri:Area/Main/Curation">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000053</idno>
<idno type="wicri:Area/Main/Exploration">000053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.</title>
<author>
<name sortKey="Sharma Poudel, Roshan" sort="Sharma Poudel, Roshan" uniqKey="Sharma Poudel R" first="Roshan" last="Sharma Poudel">Roshan Sharma Poudel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Jonathan" sort="Richards, Jonathan" uniqKey="Richards J" first="Jonathan" last="Richards">Jonathan Richards</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shrestha, Subidhya" sort="Shrestha, Subidhya" uniqKey="Shrestha S" first="Subidhya" last="Shrestha">Subidhya Shrestha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Solanki, Shyam" sort="Solanki, Shyam" uniqKey="Solanki S" first="Shyam" last="Solanki">Shyam Solanki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brueggeman, Robert" sort="Brueggeman, Robert" uniqKey="Brueggeman R" first="Robert" last="Brueggeman">Robert Brueggeman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA. bob.brueggeman@wsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Sciences, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Disease Resistance (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (microbiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Analyse de séquence d'ARN (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (pathogénicité)</term>
<term>Hordeum (génétique)</term>
<term>Hordeum (microbiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Virulence (MeSH)</term>
<term>Études d'associations génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Hordeum</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Hordeum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Disease Resistance</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Association Studies</term>
<term>Host-Pathogen Interactions</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Analysis, RNA</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Analyse de séquence d'ARN</term>
<term>Interactions hôte-pathogène</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Résistance à la maladie</term>
<term>Substitution d'acide aminé</term>
<term>Virulence</term>
<term>Études d'associations génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31842749</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>985</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-019-6369-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sharma Poudel</LastName>
<ForeName>Roshan</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Richards</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shrestha</LastName>
<ForeName>Subidhya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Solanki</LastName>
<ForeName>Shyam</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brueggeman</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA. bob.brueggeman@wsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1253987</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aviruelnce</Keyword>
<Keyword MajorTopicYN="N">Effectors</Keyword>
<Keyword MajorTopicYN="N">Hordeum vulgare</Keyword>
<Keyword MajorTopicYN="N">Puccinia graminis f. sp. tritici</Keyword>
<Keyword MajorTopicYN="N">RMRL</Keyword>
<Keyword MajorTopicYN="N">Transcriptomics</Keyword>
<Keyword MajorTopicYN="N">Virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31842749</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-019-6369-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-019-6369-7</ArticleId>
<ArticleId IdType="pmc">PMC6915985</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6486-E6495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2004 Dec;4(4):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15374532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Oct;99(10):1135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 12;7:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 20;5:416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 3;269(22):15768-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8195231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1588-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Jun;127(6):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2010 Aug;17(4):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1970 Sep 18;10(1):21-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11945347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2012 Aug;34(2):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22710621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):618-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26848538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Jun 06;17(1):122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jul;24(7):808-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21644839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 11;8:2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2016 Feb 19;14:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26891798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Oct;27(10):2991-3012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Apr 12;18(1):291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28403814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 15;6:1051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1607-1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 15;16:696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26370267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Aug;16(6):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25346350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Dec 05;9:1789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30568667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Apr 26;410(6832):1099-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11323673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 May;168(1):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25770154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Jan;108(1):133-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28876207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 11;277(5323):246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 1;31(19):5654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 01;7:241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Sep;87(9):910-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Apr;26(4):407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:289-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17430087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 25;5:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25506347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Nov;103(11):1153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23841622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 16;4:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10276-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Sep 1;4(5):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2000 Feb;84(2):203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30841334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Dec 29;11(12):e1005348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26714171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 27;7:600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb 25;12(2):e1001801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25431634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2015 Dec;31(4):323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26676169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2008 Jun;92(6):923-926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30769714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1041-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2007;2007:17542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2018 Feb 19;19(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29458393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Jun 01;1:15074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27250009</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Nord</li>
<li>Louisiane</li>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Dakota du Nord">
<name sortKey="Sharma Poudel, Roshan" sort="Sharma Poudel, Roshan" uniqKey="Sharma Poudel R" first="Roshan" last="Sharma Poudel">Roshan Sharma Poudel</name>
</region>
<name sortKey="Brueggeman, Robert" sort="Brueggeman, Robert" uniqKey="Brueggeman R" first="Robert" last="Brueggeman">Robert Brueggeman</name>
<name sortKey="Richards, Jonathan" sort="Richards, Jonathan" uniqKey="Richards J" first="Jonathan" last="Richards">Jonathan Richards</name>
<name sortKey="Shrestha, Subidhya" sort="Shrestha, Subidhya" uniqKey="Shrestha S" first="Subidhya" last="Shrestha">Subidhya Shrestha</name>
<name sortKey="Solanki, Shyam" sort="Solanki, Shyam" uniqKey="Solanki S" first="Shyam" last="Solanki">Shyam Solanki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31842749
   |texte=   Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31842749" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020